
Applications of Second-Order Differential Equations

Second-order linear differential equations have a variety of applications in science and
engineering. In this section we explore two of them: the vibration of springs and electric
circuits.

Vibrating Springs

We consider the motion of an object with mass at the end of a spring that is either ver-
tical (as in Figure 1) or horizontal on a level surface (as in Figure 2).

In Section 6.5 we discussed Hooke’s Law, which says that if the spring is stretched (or
compressed) units from its natural length, then it exerts a force that is proportional to :

where is a positive constant (called the spring constant). If we ignore any external resist-
ing forces (due to air resistance or friction) then, by Newton’s Second Law (force equals
mass times acceleration), we have

This is a second-order linear differential equation. Its auxiliary equation is 
with roots , where . Thus, the general solution is

which can also be written as

where (frequency)

(amplitude)

(See Exercise 17.) This type of motion is called simple harmonic motion.

EXAMPLE 1 A spring with a mass of 2 kg has natural length m. A force of N is
required to maintain it stretched to a length of m. If the spring is stretched to a length
of m and then released with initial velocity 0, find the position of the mass at any
time .

SOLUTION From Hooke’s Law, the force required to stretch the spring is

so . Using this value of the spring constant , together with 
in Equation 1, we have

As in the earlier general discussion, the solution of this equation is

x�t� � c1 cos 8t � c2 sin 8t2
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We are given the initial condition that . But, from Equation 2,
Therefore, . Differentiating Equation 2, we get

Since the initial velocity is given as , we have and so the solution is

Damped Vibrations

We next consider the motion of a spring that is subject to a frictional force (in the case of
the horizontal spring of Figure 2) or a damping force (in the case where a vertical spring
moves through a fluid as in Figure 3). An example is the damping force supplied by a
shock absorber in a car or a bicycle.

We assume that the damping force is proportional to the velocity of the mass and acts
in the direction opposite to the motion. (This has been confirmed, at least approximately,
by some physical experiments.) Thus

where is a positive constant, called the damping constant. Thus, in this case, Newton’s
Second Law gives

or

Equation 3 is a second-order linear differential equation and its auxiliary equation is
. The roots are

We need to discuss three cases.

CASE I ■■ (overdamping)
In this case and are distinct real roots and

Since , , and are all positive, we have , so the roots and given by
Equations 4 must both be negative. This shows that as . Typical graphs of 

as a function of are shown in Figure 4. Notice that oscillations do not occur. (It’s pos-
sible for the mass to pass through the equilibrium position once, but only once.) This is
because means that there is a strong damping force (high-viscosity oil or grease)
compared with a weak spring or small mass.

CASE II ■■ (critical damping)
This case corresponds to equal roots
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and the solution is given by

It is similar to Case I, and typical graphs resemble those in Figure 4 (see Exercise 12), but
the damping is just sufficient to suppress vibrations. Any decrease in the viscosity of the
fluid leads to the vibrations of the following case.

CASE III ■■ (underdamping)
Here the roots are complex:

where

The solution is given by

We see that there are oscillations that are damped by the factor . Since and
, we have so as . This implies that as

that is, the motion decays to 0 as time increases. A typical graph is shown in Figure 5.

EXAMPLE 2 Suppose that the spring of Example 1 is immersed in a fluid with damping
constant . Find the position of the mass at any time if it starts from the equili-
brium position and is given a push to start it with an initial velocity of m�s.

SOLUTION From Example 1 the mass is and the spring constant is , so the
differential equation (3) becomes

or

The auxiliary equation is with roots 
and , so the motion is overdamped and the solution is

We are given that , so . Differentiating, we get

so

Since , this gives or . Therefore
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Forced Vibrations

Suppose that, in addition to the restoring force and the damping force, the motion of the
spring is affected by an external force . Then Newton’s Second Law gives

Thus, instead of the homogeneous equation (3), the motion of the spring is now governed
by the following nonhomogeneous differential equation:

The motion of the spring can be determined by the methods of Additional Topics:
Nonhomogeneous Linear Equations.

A commonly occurring type of external force is a periodic force function

In this case, and in the absence of a damping force ( ), you are asked in Exercise 9 to
use the method of undetermined coefficients to show that

If , then the applied frequency reinforces the natural frequency and the result is
vibrations of large amplitude. This is the phenomenon of resonance (see Exercise 10).

�0 � �

x�t� � c1 cos �t � c2 sin �t �
F0

m��2 � � 0
2 �

 cos �0t 6

c � 0

where �0 � � � sk�mF�t� � F0 cos �0t

m 
d 2x

dt 2 � c 
dx

dt
� kx � F�t�5

 � �kx � c 
dx

dt
� F�t�

 m 
d 2x

dt 2 � restoring force � damping force � external force

F�t�

Electric Circuits

In Section 7.3 we were able to use first-order separable equations to analyze electric cir-
cuits that contain a resistor and inductor (see Figure 5 on page 515). Now that we know
how to solve second-order linear equations, we are in a position to analyze the circuit
shown in Figure 7. It contains an electromotive force (supplied by a battery or genera-
tor), a resistor , an inductor , and a capacitor , in series. If the charge on the capacitor
at time is , then the current is the rate of change of with respect 
to : . It is known from physics that the voltage drops across the resistor, induc-
tor, and capacitor are

respectively. Kirchhoff’s voltage law says that the sum of these voltage drops is equal to
the supplied voltage:

L 
dI

dt
� RI �

Q

C
� E�t�

Q
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Since , this equation becomes

which is a second-order linear differential equation with constant coefficients. If the charge
and the current are known at time 0, then we have the initial conditions

and the initial-value problem can be solved by the methods of Additional Topics:
Nonhomogeneous Linear Equations.

A differential equation for the current can be obtained by differentiating Equation 7
with respect to and remembering that :

EXAMPLE 3 Find the charge and current at time in the circuit of Figure 7 if ,
H, F, , and the initial charge and current are

both 0.

SOLUTION With the given values of , , , and , Equation 7 becomes

The auxiliary equation is with roots

so the solution of the complementary equation is

For the method of undetermined coefficients we try the particular solution

Then

Substituting into Equation 8, we have

or

Equating coefficients, we have

or
or  �16A � 21B � 0 �400A � 525B � 0

 21A � 16B � 4 525A � 400B � 100

�525A � 400B� cos 10t � ��400A � 525B� sin 10t � 100 cos 10t

� 625�A cos 10t � B sin 10t� � 100 cos 10t

��100A cos 10t � 100B sin 10t� � 40��10A sin 10t � 10B cos 10t�

 Qp��t� � �100A cos 10t � 100B sin 10t

 Qp��t� � �10A sin 10t � 10B cos 10t

 Qp�t� � A cos 10t � B sin 10t

Qc�t� � e�20t�c1 cos 15t � c2 sin 15t�

r �
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2
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d 2Q

dt 2 � R 
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The solution of this system is and , so a particular solution is

and the general solution is

Imposing the initial condition , we get

To impose the other initial condition we first differentiate to find the current:

Thus, the formula for the charge is

and the expression for the current is

NOTE 1 ■■ In Example 3 the solution for consists of two parts. Since as
and both and are bounded functions,

So, for large values of ,

and, for this reason, is called the steady state solution. Figure 8 shows how the graph
of the steady state solution compares with the graph of in this case.

NOTE 2 ■■ Comparing Equations 5 and 7, we see that mathematically they are identical.
This suggests the analogies given in the following chart between physical situations that,
at first glance, are very different.

We can also transfer other ideas from one situation to the other. For instance, the steady
state solution discussed in Note 1 makes sense in the spring system. And the phenomenon
of resonance in the spring system can be usefully carried over to electric circuits as elec-
trical resonance.
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Exercises

1. A spring with a 3-kg mass is held stretched m beyond its
natural length by a force of 20 N. If the spring begins at its
equilibrium position but a push gives it an initial velocity of 

m�s, find the position of the mass after seconds.

2. A spring with a 4-kg mass has natural length 1 m and is main-
tained stretched to a length of m by a force of N. If the
spring is compressed to a length of m and then released
with zero velocity, find the position of the mass at any time t.

3. A spring with a mass of 2 kg has damping constant 14, and a
force of 6 N is required to keep the spring stretched m
beyond its natural length. The spring is stretched 1 m beyond
its natural length and then released with zero velocity. Find the
position of the mass at any time t.

4. A spring with a mass of 3 kg has damping constant 30 and
spring constant 123.
(a) Find the position of the mass at time if it starts at the 

equilibrium position with a velocity of 2 m�s.

; (b) Graph the position function of the mass.

5. For the spring in Exercise 3, find the mass that would produce
critical damping.

6. For the spring in Exercise 4, find the damping constant that
would produce critical damping.

; 7. A spring has a mass of 1 kg and its spring constant is .
The spring is released at a point 0.1 m above its equilibrium
position. Graph the position function for the following values
of the damping constant c: 10, 15, 20, 25, 30. What type of
damping occurs in each case?

; 8. A spring has a mass of 1 kg and its damping constant is
The spring starts from its equilibrium position with a

velocity of 1 m�s. Graph the position function for the following
values of the spring constant k: 10, 20, 25, 30, 40. What type of
damping occurs in each case?

9. Suppose a spring has mass and spring constant and let
. Suppose that the damping constant is so small 

that the damping force is negligible. If an external force
is applied, where , use the method 

of undetermined coefficients to show that the motion of the
mass is described by Equation 6.

10. As in Exercise 9, consider a spring with mass , spring con-
stant , and damping constant , and let . 
If an external force is applied (the applied 
frequency equals the natural frequency), use the method of
undetermined coefficients to show that the motion of the mass
is given by .

11. Show that if , but is a rational number, then the
motion described by Equation 6 is periodic.

���0�0 � �

x�t� � c1 cos �t � c2 sin �t � �F0 ��2m���t sin �t

F�t� � F0 cos �t
� � sk�mc � 0k

m

�0 � �F�t� � F0 cos �0t

� � sk�m
km

c � 10.

k � 100

t

0.5

0.8
24.31.3

t1.2

0.6

12. Consider a spring subject to a frictional or damping force.
(a) In the critically damped case, the motion is given by

. Show that the graph of crosses the 
-axis whenever and have opposite signs.

(b) In the overdamped case, the motion is given by
, where . Determine a condition on

the relative magnitudes of and under which the graph
of crosses the -axis at a positive value of .

13. A series circuit consists of a resistor with , an induc-
tor with H, a capacitor with F, and a 12-V
battery. If the initial charge and current are both 0, find the
charge and current at time t.

14. A series circuit contains a resistor with , an inductor
with H, a capacitor with F, and a 12-V bat-
tery. The initial charge is C and the initial current 
is 0.
(a) Find the charge and current at time t.

; (b) Graph the charge and current functions.

15. The battery in Exercise 13 is replaced by a generator producing
a voltage of . Find the charge at time t.

16. The battery in Exercise 14 is replaced by a generator producing
a voltage of .
(a) Find the charge at time t.

; (b) Graph the charge function.

17. Verify that the solution to Equation 1 can be written in the
form .

18. The figure shows a pendulum with length L and the angle 
from the vertical to the pendulum. It can be shown that , as a
function of time, satisfies the nonlinear differential equation

where is the acceleration due to gravity. For small values of 
we can use the linear approximation and then the

differential equation becomes linear.
(a) Find the equation of motion of a pendulum with length 1 m

if is initially 0.2 rad and the initial angular velocity is
.

(b) What is the maximum angle from the vertical?
(c) What is the period of the pendulum (that is, the time to

complete one back-and-forth swing)?
(d) When will the pendulum first be vertical?
(e) What is the angular velocity when the pendulum is vertical?

¨
L

d��dt � 1 rad�s
�

sin � � ��
t

d 2�

dt 2 �
t

L
 sin � � 0

�
�

x�t� � A cos��t � ��

E�t� � 12 sin 10t

E�t� � 12 sin 10t

Q � 0.001
C � 0.005L � 2

�R � 24

C � 0.002L � 1
�R � 20

ttx
c2c1

r1 � r2x � c1er 1 t � c2er 2 t

c2c1t
xx � c1ert � c2tert

Click here for answers.A Click here for solutions.S
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Answers

1. 3. 5.
7.

13. ,

15.
� 3

250 cos 10t �
3

125 sin 10t
Q�t� � e�10t[ 3

250 cos 20t �
3

500 sin 20t]
I�t� � 3

5 e�10t sin 20t
Q�t� � ��e�10t�250��6 cos 20t � 3 sin 20t� �

3
125

c=30

c=25

c=20

c=15

c=10

0.02

_0.11

0 1.4

49
12 kgx � �

1
5 e�6 t �

6
5 e�tx � 0.36 sin�10t�3�

Click here for solutions.S

APPL I CAT IONS  OF  SECOND-ORDER  D I F FERENT IAL  EQUAT IONS



1. By Hooke’s Law k(0.6) = 20 so k = 100
3

is the spring constant and the differential equation is 3x00 + 100
3
x = 0.

The general solution is x(t) = c1 cos
¡
10
3
t
¢
+ c2 sin

¡
10
3
t
¢
. But 0 = x(0) = c1 and 1.2 = x0(0) = 10

3
c2, so the

position of the mass after t seconds is x(t) = 0.36 sin
¡
10
3 t
¢
.

3. k(0.5) = 6 or k = 12 is the spring constant, so the initial-value problem is 2x00 + 14x0 + 12x = 0, x(0) = 1,

x0(0) = 0. The general solution is x(t) = c1e−6t + c2e−t. But 1 = x(0) = c1 + c2 and 0 = x0(0) = −6c1 − c2.

Thus the position is given by x(t) = −1
5e
−6t + 6

5e
−t.

5. For critical damping we need c2 − 4mk = 0 or m = c2/(4k) = 142/(4 · 12) = 49
12

kg.

7. We are given m = 1, k = 100, x(0) = −0.1 and x0(0) = 0. From (3), the differential equation is

d2x

dt2
+ c

dx

dt
+ 100x = 0 with auxiliary equation r2 + cr + 100 = 0. If c = 10, we have two complex roots

r = −5± 5√3i, so the motion is underdamped and the solution is x = e−5t
£
c1 cos

¡
5
√
3 t
¢
+ c2 sin

¡
5
√
3 t
¢¤

.

Then −0.1 = x(0) = c1 and 0 = x0(0) = 5
√
3 c2 − 5c1 ⇒ c2 = − 1

10
√
3

, so

x = e−5t
h
−0.1 cos¡5√3 t¢− 1

10
√
3
sin
¡
5
√
3 t
¢i

. If c = 15, we again have underdamping since the auxiliary

equation has roots r = −15
2 ± 5

√
7

2 i. The general solution is x = e−15t/2
h
c1 cos

³
5
√
7

2 t
´
+ c2 sin

³
5
√
7

2 t
´i

, so

−0.1 = x (0) = c1 and 0 = x0(0) = 5
√
7

2
c2 − 15

2
c1 ⇒ c2 = − 3

10
√
7

. Thus

x = e−15t/2
h
−0.1 cos

³
5
√
7

2
t
´
− 3

10
√
7
sin
³
5
√
7

2
t
´i

. For c = 20, we have equal roots r1 = r2 = −10,

so the oscillation is critically damped and the solution is x = (c1 + c2t)e−10t. Then −0.1 = x(0) = c1 and

0 = x0(0) = −10c1 + c2 ⇒ c2 = −1, so x = (−0.1− t)e−10t. If c = 25 the auxiliary equation has roots

r1 = −5, r2 = −20, so we have overdamping and the solution is x = c1e−5t + c2e−20t. Then

−0.1 = x(0) = c1 + c2 and 0 = x0(0) = −5c1 − 20c2 ⇒ c1 = − 2
15

and c2 = 1
30

,

so x = − 2
15
e−5t + 1

30
e−20t. If c = 30 we have roots

r = −15± 5√5, so the motion is overdamped and the

solution is x = c1e(−15+5
√
5 )t + c2e(

−15− 5
√
5 )t. Then

−0.1 = x(0) = c1 + c2 and

0 = x0(0) =
¡−15 + 5√5 ¢ c1 + ¡−15− 5√5 ¢ c2 ⇒

c1 =
−5− 3

√
5

100
and c2 = −5+ 3

√
5

100
, so

x =
³
−5− 3√5

100

´
e(−15+ 5

√
5)t +

³
−5+ 3

√
5

100

´
e(−15− 5

√
5)t.
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9. The differential equation is mx00 + kx = F0 cosω0t and ω0 6= ω =
p
k/m. Here the auxiliary equation is

mr2 + k = 0 with roots ±pk/m i = ±ωi so xc(t) = c1 cosωt+ c2 sinωt. Since ω0 6= ω, try

xp(t) = A cosω0t + B sinω0t. Then we need

(m)
¡−ω20¢ (A cosω0t+B sinω0t) + k(A cosω0t+B sinω0t) = F0 cosω0t or A

¡
k −mω20

¢
= F0 and

B
¡
k −mω20

¢
= 0. Hence B = 0 and A =

F0
k −mω20

=
F0

m(ω2 − ω20)
since ω2 =

k

m
. Thus the motion of the

mass is given by x(t) = c1 cosωt+ c2 sinωt+
F0

m(ω2 − ω20)
cosω0t.
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11. From Equation 6, x(t) = f(t) + g(t) where f(t) = c1 cosωt+ c2 sinωt and g(t) =
F0

m(ω2 − ω20)
cosω0t. Then

f is periodic, with period 2π
ω

, and if ω 6= ω0, g is periodic with period 2π
ω0

. If ω
ω0

is a rational number, then we can

say ω
ω0
= a

b
⇒ a = bω

ω0
where a and b are non-zero integers. Then

x
¡
t+ a · 2π

ω

¢
= f

¡
t+ a · 2π

ω

¢
+ g

¡
t+ a · 2π

ω

¢
= f(t) + g

³
t+ bω

ω0
· 2π
ω

´
= f(t) + g

³
t+ b · 2π

ω0

´
= f(t) + g(t) = x(t)

so x(t) is periodic.

13. Here the initial-value problem for the charge is Q00 + 20Q0 + 500Q = 12, Q(0) = Q0(0) = 0. Then

Qc(t) = e
−10t(c1 cos 20t+ c2 sin 20t) and try Qp (t) = A ⇒ 500A = 12 or A = 3

125
.

The general solution isQ(t) = e−10t(c1 cos 20t+ c2 sin 20t) + 3
125

. But 0 = Q(0) = c1 + 3
125

and

Q0(t) = I(t) = e−10t[(−10c1 + 20c2) cos 20t+ (−10c2 − 20c1) sin 20t] but 0 = Q0(0) = −10c1 + 20c2. Thus

the charge is Q(t) = − 1
250
e−10t(6 cos 20t+ 3 sin 20t) + 3

125
and the current is I(t) = e−10t

¡
3
5

¢
sin 20t.

15. As in Exercise 13, Qc(t) = e
−10t(c1 cos 20t + c2 sin 20t) but E(t) = 12 sin 10t so try

Qp(t) = A cos 10t + B sin 10t. Substituting into the differential equation gives

(−100A+ 200B + 500A) cos 10t+ (−100B − 200A+ 500B) sin 10t = 12 sin 10t ⇒ 400A+ 200B = 0

and 400B − 200A = 12. Thus A = − 3
250

, B = 3
125

and the general solution is

Q(t) = e−10t(c1 cos 20t+ c2 sin 20t)− 3
250 cos 10t+

3
125 sin 10t. But 0 = Q(0) = c1 − 3

250 so c1 = 3
250 .

Also Q0(t) = 3
25
sin 10t+ 6

25
cos 10t + e−10t[(−10c1 + 20c2) cos 20t+ (−10c2 − 20c1) sin 20t] and

0 = Q0(0) = 6
25 − 10c1 + 20c2 so c2 = − 3

500 . Hence the charge is given by

Q(t) = e−10t
£
3
250

cos 20t− 3
500

sin 20t
¤− 3

250
cos 10t+ 3

125
sin 10t.

17. x(t) = A cos(ωt+ δ) ⇔ x(t) = A[cosωt cos δ − sinωt sin δ] ⇔ x(t) = A
³ c1
A
cosωt+

c2
A
sinωt

´
where cos δ = c1/A and sin δ = −c2/A ⇔ x(t) = c1 cosωt+ c2 sinωt. (Note that cos2 δ + sin2 δ = 1 ⇒
c21 + c

2
2 = A

2.)
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